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Part I

Introduction to Coulomb-blockade oscillations

Basic properties of semiconductor nanostructures
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Introduction

Coulomb-blockade Oscillations: A manifestation of 
single-electron tunneling through a system of two tunnel 
junctions in series.

They occur when the voltage on a nearby gate electrode 
is varied. 

Tunneling is blocked at low temperatures where the 
charge imbalance jumps from + e/2 to – e/2 (except 
near the degeneracy points). 
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Introduction

Semiconductor nanostructures are fabricated by lateral
confinement of the 2DEG in Si-inversion layers, or in
GaAs-AlGaAs heterostructures.

First type of semiconductor nanostructure found to
exhibit Coulomb-blockade oscillations: A narrow
disordered wire, defined by a split-gate technique.

Second type of semiconductor nanostructure: A small
artificially confined region in a 2DEG (a quantum dot),
connected by tunnel barriers.
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Basic Properties of Semiconductor Nanostructures

Electrons in a 2DEG move in a plane due to a strong
electrostatic confinement at the interface between two
semiconductor layers or a semiconductor and an
insulator.

The areal density can be continuously varied by changing
the voltage on a gate electrode deposited on the top
semiconductor layer or on the insulator.

The gate voltage is defined with respect to an ohmic
contact to the 2DEG.
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Basic Properties of Semiconductor Nanostructures

The density under a gate electrode of large area changes linearly
with the electrostatic potential of the gate φgate, according to the
plate capacitor formula:

A unique feature of a 2DEG is that it can be given any desired
shape using lithographic techniques.

The energy of non-interacting conduction electrons in an
unbounded 2DEG is given by:
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Basic Properties of Semiconductor Nanostructures

The density of states per unit area is independent of the energy:

where gs and gv account for the spin and valley-degeneracy.

In equilibrium, the states are occupied according to the Fermi-
Dirac distribution function:

22 2 hπ
ρ mgg vsD =

1

exp1)(
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=−

Tk
EEEEf

B

F
F

7



8 of xx

Basic Properties of Semiconductor Nanostructures

At low temperatures kBT « EF , the Fermi energy EF of a 2DEG is
directly proportional to its sheet density ns , according to:

The Fermi wave number is related to the
density by:
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Basic Properties of Semiconductor Nanostructures

When 2DEG is confined laterally to a narrow channel, its
conduction band splits itself into a series of one-dimensional
subbands. The total energy of En(k) of an electron in the n-th 1D
subband in zero magnetic field is given by:

Two frequently used potentials to model analytically the lateral
confinement are square well potential and the parabolic potential
well. The confinement levels are given by:
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Basic Properties of Semiconductor Nanostructures

Transport through a very short quantum wire (~ 100 nm, much
shorter than the mean free path) is perfectly ballistic: quantum
point contact.

The conductance G of a quantum point contact is quantized in
units of 2e2/h. This effect requires a unit transmission probability
for all of the occupied 1D sub-bands in the point contact, each of
which then contributes 2e2/h to the conductance (gsgv = 2).

Quantum wires are extremely sensitive to disorder, since the
effective scattering cross-section, being of the order of Fermi
wavelength, is comparable to the width of the wire.
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Basic Properties of Semiconductor Nanostructures

A quantum dot is formed in a 2DEG if the electrons are confined
in all three directions and its energy spectrum is fully discrete.

Transport through the discrete states in a quantum dot can be
studied if tunnel barriers are defined at its perimeter.

The quantum point contacts are operated close to pinch-off (G <
2e2/h), where they behave as tunnel barriers of adjustable height
and width.

The shape of such barriers differs from that encountered in
metallic tunnel junctions.
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Part II

Theory of Coulomb-blockade oscillations

Periodicity of the oscillations

Amplitude and lineshape
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Periodicity of the oscillations

In a weakly coupled quantum dot, transport proceeds by tunneling
through its discrete electronic states.

In the absence of charging effects, a conductance peak due to
resonant tunneling occurs when the Fermi energy EF in the
reservoirs lines up with one of the energy levels in the dot.

The probability to find N electrons in the quantum dot in
equilibrium with the reservoirs is given by:
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Periodicity of the oscillations

F(N) is the free energy of the dot, T is the temperature, EF is the
reservoir Fermi energy.

At T=0, P(N) is non-zero for only a single value of N (for the
value which minimizes the thermodynamic potential Ω(N) = F(N)
– NEF).

A non-zero G (conductance) is possible only if P(N) and P(N+1)
are both non-zero for some N. A small applied voltage is then
sufficient to induce a current through the dot.

To have P(N) and P(N+1) both non-zero at T=0 requires that
both N and N+1 minimize the thermodynamic potential in way
that F(N+1) – F(N) = EF.
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Periodicity of the oscillations

At T=0, the free energy F(N) equals the ground state energy of
the dot, for which we take the simplified form:

Here U(N) is the charging energy, and Ep (p=1,2,…) are single-
electron energy levels in ascending order. The term U(N) accounts
for the charge imbalance between dot and reservoirs.

The sum over energy levels accounts for the internal degrees of
freedom of the quantum dot, evaluated in a mean-field
approximation.
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Periodicity of the oscillations

Each level contains either one or zero electrons. The energy levels
Ep depend on gate voltage and magnetic field, but are assumed to
be independent of N. A peak in the low temperature conductance
occurs whenever:

Here, U(N) is written as:
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Periodicity of the oscillations

The capacitance C is assumed to be independent of N and the charging energy
then takes the form:

The periodicity is given by the equation:

In the absence of charging effects, ΔEF is determined by the irregular spacing
ΔE of the single electron levels in the quantum dot.
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Periodicity of the oscillations

To determine the periodicity in case of Coulomb-blockade oscillations, we need
to know how EF and the set of energy levels EP depend on φext.

In a 2DEG, the external charges are supplied by ionized donors and by a gate
electrode (with an electrostatic potential difference φgate between gate and
2DEG reservoir) and can be expressed as:

The period of the oscillations can expressed as:
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Where α is a rational function of the capacitance matrix elements of the system 
And depends on the geometry.18
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Periodicity of the oscillations

dot

Cdot/2

Cgate/
2

lead lead

Equivalent circuit of quantum dot and split gate. The mutual capacitance of 
leads and gate is much larger than that of the dot and the split gate.
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Periodicity of the oscillations

The gate voltage Vgate is the electrochemical potential difference between gate
and leads. The oscillation period ΔVgate is given by:
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Amplitude and lineshape

The equilibrium distribution function of electrons among the energy levels is
given by the Gibbs distribution in the grand canonical ensemble:

Where {ni}={n1, n2, …} denotes a specific set of occupation numbers of the
energy levels in quantum dot. The number of electrons in the dot is N=∑ni and
Z is the partition function:
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Amplitude and lineshape

The joint probability Peq (N, np=1) that the quantum dot contains N electrons
and that level p is occupied is:

In terms of this probability, the conductance is given by:
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Amplitude and lineshape

The conductance of the quantum dot in the high temperature limit is simply
that of the two tunnel barriers in series:

The conductances Gl and Gr of the left and the right tunnel barriers are given
by the thermally averaged Landauer formula:
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Amplitude and lineshape

The transmission probability of a barrier T(E) equals the tunnel rate Γ(E)
divided by the attempt frequency ν(E)=1/hρ(E):

If the height of the tunnel barriers is large, the energy dependence of the tunnel
rates and of the density of states in the dot can be ignored. The conductance of
each barrier the becomes:
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Amplitude and lineshape

The conductance of the quantum dot becomes:

If ΔE, e2/C << kBT << EF

For energy-independent tunnel rates and density of states, one obtains a line
shape of individual conductance peaks given by:
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Amplitude and lineshape

The width of the peaks increases with T in the classical regime, whereas the
peak height is temperature independent.

Temperature dependence of the Coulomb-blockade oscillations as a 
function of Fermi energy in the classical regime.
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Amplitude and lineshape

Comparison of the lineshape of a thermally broadened conductance peak
in the resonant tunneling regime.
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Amplitude and lineshape

Temperature dependence of the maxima (max) and the minima (min)
of the Coulomb-blockade oscillations.
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Amplitude and lineshape

Lineshape for various temperatures, showing the crossover from the 
resonant tunneling regime (a and b) to the classical regime (c and d).
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Thank You
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